viernes, 7 de noviembre de 2014

Circuito

Un circuito es una red eléctrica (interconexión de dos o más componentes, tales como resistenciasinductorescondensadoresfuentesinterruptores y semiconductores) que contiene al menos una trayectoria cerrada. Los circuitos que contienen solo fuentes, componentes lineales (resistores, condensadores, inductores) y elementos de distribución lineales (líneas de transmisión o cables) pueden analizarse por métodos algebraicos para determinar su comportamiento en corriente directa o en corriente alterna. Un circuito que tiene componentes electrónicos es denominado un circuito electrónico. Estas redes son generalmente no lineales y requieren diseños y herramientas de análisis mucho más complejos.

Componentes[editar]

Figura 1: circuito ejemplo.
  • Componente: Un dispositivo con dos o más terminales en el que puede fluir interiormente una carga. En la figura 1 se ven 9 componentes entre resistores y fuentes.
  • Nodo: Punto de un circuito donde concurren más de dos conductores. A, B, C, D, E son nodos. Nótese que C no es considerado como un nuevo nodo, puesto que se puede considerar como un mismo nodo en A, ya que entre ellos no existe diferencia de potencial o tener tensión 0 (VA - VC = 0).
  • Rama: Conjunto de todas las ramas comprendidos entre dos nodos consecutivos. En la figura 1 se hallan siete ramales: AB por la fuente, BC por R1, AD, AE, BD, BE y DE. Obviamente, por un ramal sólo puede circular una corriente.
  • Malla: Cualquier camino cerrado en un circuito eléctrico.
  • Fuente: Componente que se encarga de transformar algún tipo de energía en energía eléctrica. En el circuito de la figura 1 hay tres fuentes: una de intensidad, I, y dos de tensión, E1 y E2.
  • Conductor: Comúnmente llamado cable; es un hilo de resistencia despreciable (idealmente cero) que une los elementos para formar el circuito.

Clasificación[editar]

Los circuitos eléctricos se clasifican de la siguiente forma:

   {\color{Blue}\mbox{Tipo de señal}}
   \quad
   \begin{cases}
      \mbox{Corriente continua} \\
      \mbox{Corriente alterna}
   \end{cases}

   {\color{Blue}\mbox{Tipo de régimen}}
   \quad
   \begin{cases}
      \mbox{Corriente periódica}   \\
      \mbox{Corriente transitoria} \\
      \mbox{Permanente}
   \end{cases}

   {\color{Blue}\mbox{Tipos de componentes}}
   \quad
   \begin{cases}
      \mbox{Eléctricos} \\
      \mbox{Electrónicos} \quad
      {\begin{cases}
         \mbox{Digitales}\\
         \mbox{Analógicos} \\
         \mbox{Mixtos}
      \end{cases}}
   \end{cases}

   {\color{Blue}\mbox{Tipo de configuración}}
   \quad
   \begin{cases}
      \mbox{Serie}    \\
      \mbox{Paralelo} \\
      \mbox{Mixto}
   \end{cases}
LEY DE OHM
Ley de Ohm. La corriente eléctrica es directamente proporcional al voltaje e inversamente proporcional a la resistencia eléctrica.
Donde  I es la corriente eléctrica, V la diferencia de potencial y R la resistencia eléctrica.
Esta expresión toma una forma mas formal cuando se analizan las ecuaciones de Maxwell, sin embargo puede ser una buena aproximación para el análisis de circuitos de corriente continua
Los casos que se presentan a continuación tienen como finalidad última construir diagramas serie como el que se ha presentado.
Circuitos serie: Se define un circuito serie como aquel circuito en el que la corriente eléctrica solo tiene un solo camino para llegar al punto de partida, sin importar los elementos intermedios. En el caso concreto de solo arreglos de resistencias la corriente eléctrica es la misma en todos los puntos del circuito.
Donde Ii es la corriente en la resistencia  Ri , V el voltaje de la fuente. Aquí observamos que en general:
Circuitos Paralelo: Se define un circuito paralelo  como aquel circuito en el que la corriente eléctrica se  bifurca en cada nodo. Su característica mas importante es el hecho de que el potencial en cada elemento del circuito tienen la misma diferencia de potencial.

Circuito Mixto: Es una combinación de elementos tanto en serie como en paralelos. Para la solución de estos problemas se trata de resolver primero todos los elementos que se encuentran en serie y en paralelo para finalmente reducir a la un circuito puro, bien sea en serie o en paralelo.
EJEMPLOS
Encontrar la resistencia total del siguiente circuito:

Solución: El voltaje de la resistencia R1 se encuentra directamente encontrando la resistencia total del circuito:

por lo tanto la resistencia R2 tiene un voltaje de 6V, como podemos ver:

también debemos considerar que la corriente en un circuito en serie, como lo es esté,  por lo que la corriente en la resistencia R1 es la misma que la de R2 y por tanto:

Por último la resistencia total de las resistencias del circuito son:

Encontrar el voltaje de la resistencia R2 del siguiente diagrama

Solución. Aunque no se da el valor de la resistencia R1, podemos determinar el valor del voltaje en la resistencia  R2, ya que lo que si conocemos es la corriente en la resistencia R1, la cual es la misma en el resto del circuito. Por lo tanto
Encontrar la fuente de voltaje del diagrama siguiente

Solución:  De manera inmediata podemos determinar que por tratarse de un circuito serie la intensidad dela corriente es la misma en todos sus elementos. Por otro lado conocemos el valor de las resistencias, no así el de la pila del cual no será considerada en este ejercicio, y por tanto podemos obtener directamente el voltaje total del las componentes


entonces el voltaje total de la fuente es igual a:
Demostrar que para un circuito en paralelo de 2 resistencias la resistencia total es igual a:

Solución. Sabemos que para un circuito en paralelo la resistencia total es igual a:

si solo tenemos dos resistencias tendremos:

Corriente alterna

Figura 1Forma sinusoidal.
Se denomina corriente alterna (abreviada CA en español y AC en inglés, de alternating current) a la corriente eléctrica en la que la magnitud y el sentido varían cíclicamente. La forma de oscilación de la corriente alterna más comúnmente utilizada es la de una oscilación senoidal, puesto que se consigue una transmisión más eficiente de la energía. Sin embargo, en ciertas aplicaciones se utilizan otras formas de oscilación periódicas, tales como la triangular o la cuadrada.
Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las industrias. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.

Corriente continua


Representación de la tensión en corriente continua.
La corriente continua (CC e

Corriente eléctrica


La corriente eléctrica está definida por convenio en dirección contraria al desplazamiento de loselectrones.
Diagrama del efecto Hall, mostrando el flujo deelectrones. (en vez de la corriente convencional).
Leyenda:
1. Electrones
2. Sensor o sonda Hall
3. Imanes
4. Campo magnético
5. Fuente de energía
Descripción
En la imagen A, una carga negativa aparece en el borde superior del sensor Hall (simbolizada con el color azul), y una positiva en el borde inferior (color rojo). En B y C, el campo eléctrico o el magnético están invertidos, causando que la polaridad se invierta. Invertir tanto la corriente como el campo magnético (imagen D) causa que la sonda asuma de nuevo una carga negativa en la esquina superior.
La corriente eléctrica o intensidad eléctrica es el flujo de carga eléctrica por unidad de tiempo que recorre un material. 1Se debe al movimiento de las cargas (normalmente electrones) en el interior del material. En el Sistema Internacional de Unidades se expresa en C/s (culombios sobre segundo), unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, un fenómeno que puede aprovecharse en el electroimán.
El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llamaamperímetro, colocado en serie con el conductor cuya intensidad se desea medir.

Capacidad eléctrica

En electromagnetismo y electrónica, la capacidad eléctrica, también conocida como capacitancia, es la propiedad que tienen los cuerpos para mantener una carga eléctrica. La capacidad también es una medida de la cantidad de energía eléctrica almacenada para una diferencia de potencial eléctrico dada. El dispositivo más común que almacena energía de esta forma es el condensador. La relación entre la diferencia de potencial (o tensión) existente entre las placas del condensador y la carga eléctrica almacenada en éste, se describe mediante la siguiente expresión matemática:
{C} = {Q \over V}
donde:
Cabe destacar que la capacidad es siempre una cantidad positiva y que depende de la geometría del condensador considerado (de placas paralelas, cilíndrico, esférico). Otro factor del que depende es del dieléctrico que se introduzca entre las dos superficies del condensador. Cuanto mayor sea la constante dieléctrica del material no conductor introducido, mayor es la capacidad.
En la práctica, la dinámica eléctrica del condensador se expresa gracias a la siguiente ecuación diferencial, que se obtiene derivando respecto al tiempo la ecuación anterior.
 {i} = \frac {dQ}{dt} = {C} \frac {dV}{dt}
Donde i representa la corriente eléctrica, medida en amperios.

Energía[editar]

La energía almacenada en un condensador, medida en joules, es igual al trabajo realizado para cargarlo. Consideremos un condensador con una capacidad C, con una carga+q en una placa y -q en la otra. Para mover una pequeña cantidad de carga \mathrm{d}q desde una placa hacia la otra en sentido contrario a la diferencia de potencial se debe realizar un trabajo \mathrm{d}W:
 \mathrm{d}W = \frac{q}{C}\,\mathrm{d}q
donde
W es el trabajo realizado, medido en julios;
q es la carga, medida en coulombios;
C es la capacidad, medida en faradios.
Es decir, para cargar un condensador hay que realizar un trabajo y parte de este trabajo queda almacenado en forma de energía potencial electrostática. Se puede calcular la energía almacenada en un condensador integrando esta ecuación. Si se comienza con un condensador descargado (q = 0) y se mueven cargas desde una de las placas hacia la otra hasta que adquieran cargas +Q y -Q respectivamente, se debe realizar un trabajo W:
 W_{carga} = \int_{0}^{Q} \frac{q}{C} \, \mathrm{d}q = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}CV^2 = W_{almacenada}
Combinando esta expresión con la ecuación de arriba para la capacidad, obtenemos:
 W_{almacenada} = \frac{1}{2} C V^2 = \frac {1}{2} \frac {Q^2}{C}
donde
  • W es la energía, medida en julios;
  • C es la capacidad, medida en faradios;
  • V es la diferencia de potencial, medido en voltios;
  • Q es la carga almacenada, medida en coulombios.

Potencial eléctrico

El potencial eléctrico o potencial electrostático en un punto, es el trabajo que debe realizar un campo electrostático para mover una carga positiva desde dicho punto hasta el punto de referencia,1 dividido por unidad de carga de prueba. Dicho de otra forma, es el trabajo que debe realizar una fuerza externa para traer una carga positiva unitaria qdesde el punto de referencia hasta el punto considerado en contra de la fuerza eléctrica a velocidad constante. Matemáticamente se expresa por:
V = \frac{W}{q} \,\!
El potencial eléctrico sólo se puede definir para un campo estático producido por cargas que ocupan una región finita del espacio. Para cargas en movimiento debe recurrirse a los potenciales de Liénard-Wiechert para representar un campo electromagnético que además incorpore el efecto de retardo, ya que las perturbaciones del campo eléctrico no se pueden propagar más rápido que la velocidad de la luz. Si se considera que las cargas están fuera de dicho campo, la carga no cuenta con energía y el potencial eléctrico equivale al trabajo necesario para llevar la carga desde el exterior del campo hasta el punto considerado. La unidad del Sistema Internacional es el voltio (V). Todos los puntos de un campo eléctrico que tienen el mismo potencial forman una superficie equipotencial. Una forma alternativa de ver al potencial eléctrico es que a diferencia de la energía potencial eléctrica o electrostática, él caracteriza sólo una región del espacio sin tomar en cuenta la carga que se coloca all

Campo eléctrico

Campo eléctrico producido por un conjunto de cargas puntuales. Se muestra en rosa la suma vectorial de los campos de las cargas individuales; \vec E =\vec E_1 +\vec E_2 + \vec E_3 .
El campo eléctrico es un campo físico que es representado mediante un modelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica.1 Se describe como un campo vectorial en el cual una carga eléctricapuntual de valor q sufre los efectos de una fuerza eléctrica \vec F dada por la siguiente ecuación:
(1)\vec F = q \vec E
En los modelos relativistas actuales, el campo eléctrico se incorpora, junto con el campo magnético, en campo tensorialcuadridimensional, denominado campo electromagnético Fμν.2
Los campos eléctricos pueden tener su origen tanto en cargas eléctricas como en campos magnéticos variables. Las primeras descripciones de los fenómenos eléctricos, como la ley de Coulomb, sólo tenían en cuenta las cargas eléctricas, pero las investigaciones de Michael Faraday y los estudios posteriores de James Clerk Maxwell permitieron establecer las leyes completas en las que también se tiene en cuenta la variación del campo magnético.
Esta definición general indica que el campo no es directamente medible, sino que lo que es observable es su efecto sobre alguna carga colocada en su seno. La idea de campo eléctrico fue propuesta por Faraday al demostrar el principio deinducción electromagnética en el año 1832.
La unidad del campo eléctrico en el SI es Newton por Culombio (N/C), Voltio por metro (V/m) o, en unidades básicas, kg·m·s−3·A−1 y la ecuación dimensional es MLT-3I-1

Fuerza eléctrica

Entre dos o más cargas aparece una fuerza denominada fuerza eléctrica cuyo módulo depende de el valor de las cargas y de la distancia que las separa, mientras que su signo depende del signo de cada carga. Las cargas del mismo signo se repelen entre sí, mientras que las de distinto signo se atraen.

Fuerza eléctrica

La fuerza entre dos cargas se calcula como:





q1, q2 = Valor de las cargas 1 y 2
d = Distancia de separación entre las cargas
Fe = Fuerza eléctrica


La fuerza es una magnitud vectorial, por lo tanto además de determinar el módulo se deben determinar dirección y sentido.

Dirección de la fuerza eléctrica

Si se trata únicamente de dos cargas, la dirección de la fuerza es colineal a la recta que une ambas cargas. 

Sentido de la fuerza eléctrica

El sentido de la fuerza actuante entre dos cargas es de repulsión si ambas cargas son del mismo signo y de atracción si las cargas son de signo contrario.

Fuerzas originadas por varias cargas sobre otra

Si se tienen varias cargas y se quiere hallar la fuerza resultante sobre una de ellas, lo que se debe hacer es plantear cada fuerza sobre la carga (una por cada una de las otras cargas). Luego se tienen todas las fuerzas actuantes sobre esta carga y se hace lacomposición de fuerzas, con lo que se obtiene un vector resultante.