MOVIMIENTO CIRCULAR UNIFORMEMENTE ACELERADO (MCUA)
El movimiento circular uniformemente acelerado (MCUA) se presenta cuando una partícula o cuerpo sólido describe una trayectoria circular aumentando o disminuyendo la velocidad de forma constante en cada unidad de tiempo. Es decir, la partícula se mueve con aceleración constante.
En el dibujo se observa un ejemplo en donde la velocidad aumenta linealmente en el tiempo. Suponiendo que el tiempo en llegar del punto P1 a P2 sea una unidad de tiempo, la partícula viaja con unaaceleración tangencial uniforme v, incrementándose esa cantidad en cada unidad de tiempo.
Posición
El desplazamiento de la partícula es más rápido o más lento según avanza el tiempo. El ángulo recorrido(θ) en un intervalo de tiempo t se calcula por la siguiente fórmula:
Aplicando la fórmula del incremento de ángulo calculamos la posición en la que estará la partícula pasado un tiempo t se obtiene la fórmula de la posición:
Velocidad angular
La velocidad angular aumenta o disminuye linealmente cuando pasa una unidad del tiempo. Por lo tanto, podemos calcular la velocidad angular en el instantet como:
El sentido de la aceleración angular α puede ser contrario al de la velocidad angular ω. Si la aceleración angular es negativa, seria un caso de movimiento circular uniformemente retardado.
Velocidad tangencial
La velocidad tangencial es el producto de la velocidad angular por el radio r. La velocidad tangencial también se incrementa linealmente mediante la siguiente fórmula:
Dándose aquí igualmente la posibilidad de aceleración negativa que se ha descrito en el apartado anterior.
Aceleración angular
La aceleración angular en el movimiento circular uniformemente acelerado es constante. Se calcula como el incremento de velocidad angular ω desde el instante inicial hasta el final partido por el tiempo.
Aceleración tangencial
La aceleración tangencial en el movimiento circular uniformemente acelerado MCUA se calcula como el incremento de velocidad v desde el instante inicial hasta el final partido por el tiempo.
No hay comentarios.:
Publicar un comentario